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SECTION 1

INTRODUCTION

The behavior of the electron energy spectrum in a weakly ionized

gas in the presence of electric fields, momentum transfer collisions, and

energy transfer collisions with the host gas is a long standing problem in

plasma physics. Historical surveys appear in References 1 and 2. We have

in mind electrons with energy from zero to several eV or a few tens of eV.

The electron energy spectrum controls many processes of inter-

est, such as rates of chemical reactions (attachment, detachment, recom-

bination, etc.), avalanche rate, electrical conductivity and mobility,

diffusion, mean electron energy, mean momentum- and energy-transfer col-

lision frequencies, etc. Weakly ionized gases occur frequently in natural

and laboratory situations: for example the ambient or nuclear-disturbed

ionosphere, and in ionization following dosed air due to gamma-rays (e.g.

nuclear EMP), or X-rays, or the passaqe of fast charged particles. If an

electric field is present it can cause the electron cloud to drift, heat

it, and possibly produce avalanching.

HISTORICAL

The spectrum is controlled, of course, by the Boltzmann Equa-

tion, and techniques for solving it, and certain progress, were establish- _l

ed decades ago (e.g., References 3 and 4). Useful answers were hampered 0_

by lack of basic molecular cross sections, and the difficulty of analytic- _......

ally solving the Boltzmann Equation. An expansion in Leqendre Polynomials

in the angle between the velocity vector and the electric field is useful
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in the swarm regime, in which the drift velocity is small compared with

thermal velocity, and this expansion will be employed in the present work,

at least in its early stages.

w

Harder to handle is the collision integral, because of discrete

energy loss in inelastic collisions. The integral can be expanded in

powers of mean energy loss per collision divided by the average swarm

energy. When the expansion is terminated with the first non-trivial term,
w

representing mean energy loss, the ensuinq results are called the Contin-

uous Slowing Down Approximation (CSDA). It involves an enerqy-weighted

sum over excitation cross-sections called the "Energy Loss Function", or

the "Stopping Cross Section", measuring the mean enerqy loss rate of mono-

energetic electrons.

Data available more recently have made it possible to construct

the energy loss function at these relatively low energies where it is ex-

tremely difficult to calculate from first principles. (At higher ener-

gies, 1 1 keV, the Loss Function can be calculated in the Born approxima-

tion, where it is known as the Bethe mean stopping power formula.) Using

it, energy spectra and bulk plasma parameters computed in the CSDA have

been shown to disagree with experimental values by, for example, perhaps

30% for mobilities, and by large factors for the avalanche rate at low

temperatures (e.g., Reference 5). Poor agreement with avalanche indicates

that the CSDA is particularly deficient in reproducing the high energy

tail.

In the special case of constant mean free path and energy loss

only to elastic recoil (applicable for example in noble gases at energies

below electronic excitation), the transport coefficients computed in the

CSDA agree reasonably well with experiments. The spectrum in this case is

known as the Druyvesteyn spectrum. Historically it was the first non-

Maxwellian spectrum computed for a plasma in the presence of an electric

field.

2
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With the advent of better experimental cross-sections and com-

puting facilities attention turned to numerical solutions of the complete

Boltzmann Equation with inelastic collision integral, by either Monte

Carlo or finite difference techniques. This enabled relatively accurate

energy spectra and swarm parameters to be computed, which compare general-

ly quite successfully with experiments. Indeed, one way of determining

basic electron-molecule cross-sections is to assume a form for them

(guided by previous experiments and quantum-mechanical calculations), and

compute the resulting swarm parameters. The cross-sections are then

adjusted until computed parameters aqree with experimental ones. This

technique has been successfully employed by, for example, A. V. Phelps and

co-workers over some years (for example, References 6 and 7). "

Thus numerical methods exist to compute spectra and transport

coefficients. These numerical techniques do not offer physical insight

into swarm behavior, and often do not suggest physically-motivated

approximation schemes that might be useful in specific applications.

APPROXIMATE APPROACH

Here we prefer to study more intuitively the processes that

determine the spectrum. Our goal is not precise solutions of the Boltz-

mann Equation. Rather, we build on physically motivated models to con-

struct an approximation to the inelastic collision integral superior to

the CSDA. This will lead us to an approximate differential equation for

the time evolution of the spectrum in a time varying field, and to a

closed form analytic expression for the steady state energy spectrum in

terms of the host gas momentum-transfer cross-section and two weighted

sums over inelastic energy-transfer cross-sections. The availability of

basic electron-molecule cross-sections in interesting gases makes the

approach advantageous and useful.

3
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The argument makes clear the importance of spread of energy loss

about the mean (energy diffusion, loosely speaking). Usual treatments,

such as the CSDA, which retain only the mean energy loss rate, miss a cri-

tical piece of the physics determining the spectrum. The approximate

spectrum retaining this critical physics can be reduced to quadratures,

and is essentially no more complicated in form than the CSDA. It makes

clear the physical reason for the inadequacy of the CSDA, and, in particu-

S.'- lar, it becomes clear why the tail is so low in that approximation. We

find the transport coefficients in Nitrogen come out in closer agreement

with experiment than in the CSDA. Other gases will be studied in the

future. Hopefully the accuracy of the computed coefficients in these

gases will be sufficient for a number of applications.

The validity of our approximation (which, as a differential

equation, is local in energy space) is still limited by discrete finite

energy loss jumps in inelastic processes such as electronic excitations.

We require energy steps to be small compared to the spectrum width.

Examples of its limitations will be seen in the avalanche rate where our

imperfect treatment of energy loss, although improved over the CSDA's,

results in a somewhat high rate, and in the N2 drift velocity at a few eV

where the tail of the spectrum can excite electronic states, suddenly

decreasing the electron energy by 6 or 7 eV or more. However vibrational

excitations cause fractionally small energy transfer, and the approxima-

tion appears to be excellent when vibrational excitations dominate, or at

higher energies where even electronic levels are not much more energetic

" than the energy spread in the spectrum itself.

Aside from these problems, the spectrum we deduce reproduces ex-

perimental drift velocities and diffusion coefficients very well over some

5 orders of magnitude in the experimental parameter E/p (the reduced elec-

tric field) spannina, for example, essentially the entire range of data

compiled by Dutton (Ref. 8).

4
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SECTION 2

THE BOLTZMANN EQUATION

The Boltzmann Equation for the electron distribution function

f(') in an electric field is

_f _ eE.7 f = C + Sources - Sinks (1)
)t m v

dropping the spatial gradient term and any magnetic field from the left

hand side. Here e is the magnitude of the electron charge. Sources may

be X-ray ionization, or ionization by a fast charged particle. Sinks

would include recombination or attachment. Actual sources and sinks are

problem specific, and are not considered further here. We concentrate on

the effects of the field term and the collision integral C in determining

f.

Many bulk plasma parameters depend on only the speed distribu-

tion function

F(v) = j'dvf(V) (2)

or, equivalently, on the energy distribution function g(w),

g(w)dw = F(v)v 2dv, (3)

g(w) = (v/m)F(v)

where w = mv2/2 is the electron energy. If n is the number density of

particles, the normalizations are

5
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n = )f(v)d 3v = F(v)v 2dv "gdw (4)

The dimensions of g are, say, cm- 3 eV- !  The equilibrium Maxwell distri-

butions for a gas of temperature T (in energy units), which obtain when W

E= 0, are

fM(v) = n, rmLj e-mV 2/2T

FM(v) = 4,tf M  (5)

gM(w) _ ,w /2 eW/T

LEGENDRE EXPANSION OF THE DISTRIBUTION FUNCTION

For reduced electric fields not too large, the departure from

isotropy will be small, and f is usefully developed in the usual Legendre

Polynomial series in the angle 0 between v and E (ref. 4)

f : f7 (v) Pz(cos3)

(6)
= fa + f, coso + small terms

The quantitative criterion is Vdrif t << V therma When electron-neutral

collisions dominate, C is linear in f. C is also expanded, and when the

series are inserted in Eq. (1) the P, and P, parts become

)f eE ,2 f + )f" = C 7a
)t 3m v V

,f eE ,f -

'7 h
7t- 7

.. '.
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* fo controls the eneroy spectrum, for F and g are

F(v) = (f,+flcose)dq 4-fff
~~(8)..

a = Tv f
m

while f, controls the bulk electron motion with a drift velocity

0 d f ' d~v = 1 r (f0+flcose)'d 3v
n n

(9)
=4__ E r flv'dv

3n

LEGENDRE EXPANSION OF COLLISION INTEGRAL

Thus Co is the contribution of the collision integral to the
time rate of change of g, while C1 is the contribution of C to the rate of

chanqe of that part of the spectrum that controls the swarm momentum. In

qeneral, for a weakly ionized qas in which electron-neutral collisions

dominate (ref. 4)

0!
C, - mfl (10)

where = NOv7 is the mono-enerqetic momentum transfer collision frequen-
opm m

cy, - is the momentum transfer cross-section, and N, is the background

aas number density.

C_ receives contrihutions from elastic and inelastic processes.

-ezas 'Inelas+ (11) '

*" q
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The elastic contributions are from electron energy loss to heavy

molecule recoil in an elastic collision, and electron heating by elastic

collisions with the host gas at temperature T . These parts are (ref. 4)

celas = 1 _ 2m f + 2 T_ f____
SV~ v 2(12)

V v 2) M0  m 3(v2)

where Mo is the molecule mass, assumed much qreater than the electron mass
m. The first term in Eq. (12) is t mean enerqy loss rate by elastic

collisions. The second term represents the heating rate by the warm gas

(the Davydov term). Note the first is esentially proportional to ;f01w,

while the second is proportional to 32fo/?W 2. The first term is the CSDA

• , to elastic energy loss, and the second is a diffusion-like correction due

to gas motion. Hiqher order corrections (in m/Mo) are safely negligible,

and the CSDA is adequate for elastic collisions.

inelas will be treated in the next section.

SLOWLY VARYING FIELDS

Eq. (10) is inserted into Eq. (7b), I

9f, - eE afo  : - (13)
;t m v -

When 3/ t << jm, we have

'2. f1  : eE 3fo (14)
mvm av

I

8
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expressing the first order distribution function in terms of the energy

spectrum. v is greater than some 10 sec- 1 in sea level air, so condi-

tion (14) holds in many circumstances.

To obtain the equation for fo we combine the two terms in the

first of Eqs. (7) (2f1/v+)f 1 /)v = v- 2 3(v2f,)/)v), and insert Eq. (14) for

fo _ e 2E2  2  fo elas + Cinelas (15)
)t m v v K )v

We may now transform to an equation for g(w):

_g + [ e2E2 {g - 2 (wg)j Celas + Cinelas (16)

)t )w mv 3 )w g g

In this equation we have split the electric field term into two parts, one

essentially proportional to )g/)w, and one to 2q/' w2 . We also define the

collision integral terms on g rather than fa:

•Celas = 2m )' m w ig + w Tg (9 } (17)

inelas
Cinelas is taken up in the next section.
g

ENERGY DIFFUSION IN THE ELECTRIC FIELD

The two parts of the electric field term in Eq. (16) correspond

mathematically to a mean flux (~g/)w) and a diffusive flux ! 2g/

Sw
2). That is, elastic scattering in the presence of an electric field

" produces both a mean gain in energy (rate e2E and a diffusion 'a

9P 
9

9e-2



in energy (diffusion coefficient - (2/3)we E /mvm). That elastic (or

momentum-transfer) scattering causes velocity diffusion is well-known.

That energy diffusion is important can be seen by comparing its

effect in Eq. (16) to that of mean energy gain on a Maxwellian

distribution of temperature T:

Diffusive Gain 3 w = -I+2w (18)
Mean Gain g 3 T

p'S.

This is of order unity, and changes sign over the average energy 3T/2.

Diffusion 3llows particles of energy w > 3T/2 to gain energy faster than

the mean, and particles with w < 3T/2 to gain energy slower than mean,

thus spreading out the spectrum. Diffusion adds body to the spectrum.

100
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SECTION 3

THE INELASTIC COLLISION INTEGRAL

The general form for the collision integral is

Cg f g(w')P(w',w)dw' - g(w) f P(w,w')dw' (19)

where P(w,w')dw' is the probability per second that an electron with
energy w collides and ends up with energy (w',w'+dw'). The CSDA to the

elastic part of C was given in Eq(17). For the inelastic part, colli-
9

sional excitations to discrete molecular states k of energy wk and cross

section ak(w), contribute to P an amount

P(w,w')dw' = No v ak 6(w-wk-w')dw' (20)
k

assuming all host molecules in the ground state. For a diatomic molecule

there will be rotational, vibrational, and electronic states. Excited

rotational levels will be populated thermally. This is accounted for in

Appendix A in connection with the evaluation of the functions Lin and M.in in

of Equations (23). For simplicity in the present discussion, we write NO

as if all molecules were in their ground state. The integrals in Eq. (19)

are then readily evaluated for these inelastic processes:

inelas
C = No i E( Vg)w.w - (%vg)wi (21)

-"U



This clearly exhibits the discrete nature of energy loss, g being popu-

lated at w by electrons of energy w + wk. Since the cross sections ak

are not exact step functions, the sum Cinelas itself is, of course, a
g

continuous function of w. Developing the summand in a Taylor Series about

w, we exhibit the first two terms,

Cinelas = No -I- FvgLi + -. (vgM + .. (22)
q w in w + )W in

where

L in )Wkak(W) (23a)V --

Mn k' 2~ k~ k(w)(2b

Lin is the Energy Loss Function describing the mean energy loss rate to

inelastic processes. According to Eq (17), the elastic part of the loss

function, for the target molecule at rest, is

L 2m aw (24)- Lel M-

m
%" where we have used Vm =Nova. The total mean loss rate to an electron

of energy w is

L = L + Lin (25)

Since energy loss collisions are probablistic processes, there

will actually be a distribution in the energy loss about the mean rate L.

This is approximated by the Min term, which can be called the Stragqlinq

Function in analogy to the high energy case. This second term in Eq.

(22), proportional to )2/,)W2 , approximates the true discontinuous random

12
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walk in energy space by a diffusion-like process. Contributions to the

Straggling Function from elastic scattering, Mel, are smaller than Lel by

- (m/Mo)w, and can be neglected. M. therefore essentially does not dif-
in

fer from the total Straggling Function M = Mel + Min*

The CSDA neglects the M. term and retains only the mean loss
in

rate Lin in Eq. (22).

Momentarily neglecting Tg Eq. (16) for )g/)t now reads

.g + __ {e2 E2 [g _2 (wg)} N -I vgL + X (vgM)j (26)b)t )w m Vm  3 3w ) w )w.''.

or, in flux conservative form,

)9 + , 0 (27)
3t )w

where

e 2E2 rg - 2 (wg) NovgL - No _3 (vgM) (28)
my 7 _) )w

m

is the flux in energy space.

MAGNITUDE OF SPREAD IN ENERGY LOSS

Like L, M is constructed from individual excitation cross

sections. The ratio M/L is likely much more slowly varying than L or M

itself, since irregular behavior in the cross sections such as the N2

resonance spike near 2.5 eV will occur in both L and M and divide out in

the ratio.

13



Spread about the mean energy loss L can be compared with L.

From Eq. (28) it is of order

Diffusive Loss - 1 a (vgM) -M (29)
Mean Loss vgL 3w iL(

where W is the energy over which Mg = (M/L)Lg changes much, being of

order the swarm temperature or a characteristic energy over which L itself
changes. This ratio is not negligibly small, and can be of order unity,

showing that diffusive contributions to energy loss can be comparable to
I the mean loss, as was the case for energy gain. Sincc. in steady state

mean loss essentially balances mean gain, diffusive loss can be as

important as diffusive gai- in determining the spectrum.

IMPORTANCE OF ENERGY DIFFUSION

The steady state spectrum from Eqs. (27) and (28) is that for

which 0 : 0, and results from a balance between total energy gain from the

electric field and total energy loss to collisions.

It is instructive to temporarily neglect the diffusive contribu-

tions to the flux; that is, the M term in the collision integral, and the

term -(2/3);(wg)/3w in the electric field expression. The steady state

spectrum one then obtains is that resulting from mean energy gain e2E2/

mvm balanced by mean energy loss N0vL. See Figure la. This spectrum

- reduces to a delta function at a single energy w, where the rates are

equal. Since the mean gain is a decreasing function of w, while the mean

loss is an increasing function, all electrons with w > w, lose energy

faster than they gain it, and all electrons with w < w, gain energy faster

than they lose it. All electrons thereby end up with energy w1 . Thus the

physical process which actually determines the energy spectrum is spread

in energy gain or loss about the mean. Mean gain and loss rates determine

only the average energy in the swarm.

14



RESULTANT SPECTRUM

Figure la Balance of mean gain and loss rates.
Resultant spectrum is a 6 function at wl.

RATERT

40

w
REALISTIC ci
SPECTRUM CB

Figure lb Balance of complete gain and loss rates.
CSDA neglects spread in energy loss.
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It is clear that for electrons with a spread in energies to be

in steady state there must be a balance between gain and loss rates over a

spread in energies, and this spread determines the spectrum,

This shows that in the CSDA, the only physical process which

establishes the spectrum, that is, gives body to the distribution

function, is energy diffusion due to elastic scattering in the electric

field, since in the collision integral only the mean loss rate is

retained. Figure lb illustrates the CSDA and a realistic spectrum. W

Since energy diffusion is so important, we must keep the

diffusive contribution in C as well to deduce a realistic spectrum.i g
While L is the lowest order term in the expansion of C g' it affects only

the average swarm energy. M is the lowest order contributor from the col-

lision integral to the energy distribution.

As Figure lb shows, the CSDA is poor because it retains energy

diffusion in the E-field energy gain term, but neglects it in enerqy loss

processes. That is, it neglects "half" of the physics determining the

spectrum.

From this point of view we see that M should not be considered

just another term in a Taylor Series expansion of a function. Rather it

represents a critical piece of physics that determines the distribution

function, and must not be neglected. The functional form in which M

appears is a Fokker-Planck approximation to the true random walk. The

approximation will be best when the energy loss per collision is small

compared with the energy spread in the entire spectrum. Similar to the

usual Fokker-Planck equation, it assumes large energy changes occur as a

succession of small ones.

The L, M approximation to C is, of course, local in energyg
space, as is any differential approximation to a random walk problem. 0
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If the energy loss wk is extremely small compared with w, then

Equations (23) show M << wL, and the CSDA will be adequate. This happens,

for example in elastic collision recoil as mentioned after Eq. (25). If

wk is comparable with w or the spectrum spread, then the Fokker-Planck

diffusion approximation breaks down. This begins to happen in N2 at

average energies of, say, I or 2 eV when energetic tail electrons can

excite electronic transitions and wk - 7 eV, or at - .01 eV where rota-

tional jumps have comparable energy. There is an interesting intermediate

regime where the dominant wk is sufficiently smaller than w but not negli-

gible. This appears to be the case in N2 for E/N0 ; .01 Td, giving the

swarm energies greater than rotational jumps, and where vibrational tran-

sitions dominate. Even at 1 or 2 eV, electronic transitions induced by

the tail are only a part of the energy loss, and the diffusion approxima-

tion is still not bad.

One important feature of keeping M is that this term allows some

electrons to lose energy slower than the mean, thereby supporting the high

energy tail of the spectrum, as seen graphically in Figure lb. This will

greatly increase the avalanche rate over the CSDA.

We have still neglected third and higher derivatives in the

expansion Eq. (22). The main properties of any normalized distribution

with a decaying tail, such as F or g - /w F, are its average energy and

the "width" of the function about the average. The first derivative term

* L determines the average energy, and the second derivative term M deter-

mines the width, together with corresponding terms from the field contri-

bution. Higher neglected terms could affect only the detailed shape of

the function. For example, the third derivative would alter the asymmetry

of the spectrum about the mean, and the fourth derivative would set the

kurtosis. The transport coefficients of interest are weighted integrals

over the spectrum, and the details of the spectrum tend to integrate out.

Thus there is physical reason to expect that stopping with L is insuffi-

cient (CSDA) but stopping with M is sufficient to calculate a spectrum

17
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which reproduces bulk transport coefficients with some acceptable accur-

acy. These arguments may be less true for the avalanche coefficient atS.

low temperatures which requires an accurate high energy tail.

CORRECTIONS FOR GAS HEATING

Equations (23) for the inelastic parts of L and M are expres-

sions for the gas at rest. Thermal effects were mentioned only in connec-

tion with the elastic part of L in Eq. (12). In fact the Davydov correc-

tion for thermal motion of molecules shows that collision calculations are

to be modified by replacing g by:

g + g + T /- q) (30)
g w Tw

or, in terms of F(v):

F - F + T 9[ (31) 0
q w

Therefore thermal qas motion is taken into account by replacing the flux t

in Eq. (28) by

2e LE 2 g a (wg)1 - NovL g + T /wi- (_B 1
mvm 3 w q w w

(32)

-. INovMrg + T IW-3L" S'2li
w g Vw

The steady state spectrum is that for which 0 = . When E + () as well,

the solution of (32) clearly reduces to a Maxwellian, as it must, for then

g + T f, d(g/w)/dw = 0.g

.9.



SECTION 4

EQUATION FOR TIME DEPENDENCE OF ENERGY SPECTRUM

Dropping the Davydov terms, equations (27) and (28) (or (32)

*with T 0) control the time evolution of the energy spectrum in the ab-

sence of sources and sinks:

~q~ ~22  -2~(Q)1- Nv~ - 3  (vqM) =0 (33)
)t )w mv 3 )w

Sources and sinks are to be added to the right hand side for a specif ic

problem as appropriate. Eq. (33) is valid for E varying slowly compared

*with the momentum transfer freouency v , but on any time scale relative to

the mean energy transfer frequency. Since )> 101 /sec in sea level air,

Eq. (33) will apply to many problems of interest. For example, following

a pulsed ionization source, for which the starting spectrum is the initial

0condition to Eq. (33), this equation determines the relaxation of the

spectrum toward equilibrium in the electric field and warm qas.

For situations where E =0, the resultinq equation

N, 1..vLg + -(v) 0 (34)

determines the relaxation of q from an initial condition toward thermal

equilibrium. Without the E term, Ea. (34) is no lonqer limited by v drft

<< v teml(two term Legendre series), and so applies to electrons of any

energy. It includes mean enerqv loss, straqqlinq, and thermal heatinq

* (through thermally populated rotational states in L and M).

%9
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If straggling were to be neglected (CSDA), the resulting equa-

tion

2- No L (vgL) = 0 (35)

would show simple convection in energy space, and laminar flow. That is,

electrons of higher energy would never overtake ones of lower energy.

Straggling destroys laminar flow, and permits passing in energy space, as

actually occurs in a random walk, and spreads out the spectrum.

b"-.
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SECTION 5

STEADY STATE SPECTRUM

In steady state, the solution for F = (m/v)g of Eq. (33) with

g/t= 0 is

w L + (wM)

F = F expi -- J" w _w dw' (36)m7'3 (eE/No)2

where F: is a normalization constant set by Fq. (4). This spectrum is an

improvement over the CSDA

F F3 exp" - r Tm L dw (37)

* (eE/N:) 2

which results when M is neglected. Both have a Quite simple functional

form.

THE DRUYVESTEYN SPECTRUM

The Druyvesteyn spectrum is recovered from Eq. (37) in the

special case of 3m = constant and elastic collisions only,

L L2m m (38)
el m

21
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Then, F reduces 
to

F = Fo expf- (39)
MO(eE/No) 2'

In this sane special case the more correct Eq. (36) is essen-

tially the same as (39) because, for elastic collisions only, M - (2m/

M0 )wL << wL, and the M correction is negligible. Thus the improved spec-

trum does not mar already good agreement with data.

It is when inelastic collisions are important that the differ-

ence between (36) and (37) is significant.

THE NEW TERMS

In Section 6 it will be shown that the two terms (eE/N 0 )
2/3 m

and M in the denominator of Eq. (36) can be identified as diffusion coef-

ficients in energy space due to elastic scattering in the electric field

(first term) and due to spread in energy loss about the mean (M term).

The total diffusion coefficient is just the sun of the two.

loss The first term L in the numerator is the mean rate of energy

loss (or gain, if L is negative) due to collisions. The second term

(1/w)d(wM)/dw is a mean loss (or gain) rate due to energy variation of the

diffusion coefficient M.

At energies below vibrational excitation, and neglecting elastic

scattering, only rotational states contribute to L and M. We shall use

the Gerjuoy-Stein rotational cross sections to evaluate this contribution

(Appendix A). States AJ = 2 apart are spaced by (4J-2)B o, where Bo is

the rotational constant. The cross section for de-excitation, aj3-_2

diverges as V4JB 0/w when w # 4JB 0 . In nitrogen, Bo  2.5xi0 -  eV. This

22



causes a formal divergence in the numerator term (1/w)d(wM)/dw, and effec-

tively makes the spectrum unreliable for w < 10- 3 eV, and the calculated

transport coefficients inaccurate for E/N 10- 2 T When w 4JB dif-
w- JBdf

fusion is no longer a good approximation. For numerical calculations we

have simply smoothed out the divergence by multiplyinq this numerator term

by w/(w+B9). The inaccuracies in characteristic enerqy and drift velocity

will be seen in Section 7.

THE LOW ENERGY THERMAL LIMIT

For vanishingly small electric fields, the remaining terms in

Eq. (36) should make F reduce to a Maxwellian at T . Thus we should haveg

L + w-1  (wM)/ w 1 (40)
M T

g

or, solving for M,

-(w'-w)/TgM = I_w/Te w'L(w')dw' (41)

w W

M must be a weighted integral of L over an energy span about T
q.

Since T enters L and M only through rotational populations (weg
neglect vibrational temperature), Eq. (40) should hold if we consider only

the rotational contributions. Upon constructing L and M (Appendix A) one

Finds Eq. (40) is in general not true. Rotational levels with J = 10 or

larger exist, and so energy jumps 4JB = 410-2.5.10- 4 = .01 eV in N_,

occur, encroaching on electron thermal energies .02 eV. That is, the

diffusion approximation breaks down at these low energies, and Eq. (36) is

not a good approximation to the spectrum.

% So
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However in a hypothetical gas with Bj 0 0, all energy jumps are

small, and Eq. (36) is correct. For such a qas, Eq. (40) should hold. In

Appendix A, using the Gerjuoy-Stein rotational cross sections, we take the

limiting expressions of L and M for B0 -0, and show explicitly that EQua-

tions (40) and (41) are indeed true, independent of all cross section

parameters. According to equilibrium statistical mechanics, this "must"

happen, but it is comforting to see it follow from a direct calculation

using actual cross sections.

Using the complete L and M for N2, the actual spectrum of Eq.
(36) with E = 0 is shown in Figure 2. Above about .01 eV it is indeed

Maxwellian at the correct temperature, 300 K. (The departure in the high

energy tail above 0.3 eV is because we assume the gas is in the vibration-

al ground state). But near .01 eV there is a non-Maxwellian dip due to

"large" energy jumps not well modelled by the Fokker-Planck form. This

irregular behavior goes away as B0 -, 0.

24.
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Figure 2. Spectrum in N2 from Equation (36) when E=0. Dip near .01 eV
is due to rotational transitions of comparable energy. Gas
at 300K.
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SECTION 6

RELATION TO ORDINARY DIFFUSION THEORY

The functional form, Eq. (36), for F has a simple interpretation

in terms of elementary diffusion and convection theory.

Let a quantity , diffuse and convect in one dimension x with

diffusion coefficient D and convection velocity V:

+ _ (v =  _ D (42)
at ax ax ax

We shall presently identify x with w and p with g. V and D may be

functions of x. In steady state, the elementary diffusion-convection

equation (42) shows that the flux must be constant in t and x:

Vi - D2L= constant =0 (43) i
ax

We assume 1 and its derivative vanish at some end point, so the constant

is taken to be zero. Then

1 :V (44)
3 x D

In steady state the (prescribed) convection velocity and diffusion

coefficient determine the logarithmic derivative of the dependent variable

by Equation (44). Consequently 0 is distributed according to

26
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* rVdx
(x) D (45)

where 1 is a normalization constant.0

If we now take x to be the electron energy w, and q the spectrum

g, the controlling equation Equation (33)

S2a + Lf L2{E2 rg 2 L (wg)l - NovLg - (N0 vMg)I 1 0 (46)
3t w mvm 3 aw N

can be put in the canonical form of Equation (42) by expanding derivatives

and defining

Di  N0vM (47)

as the coefficient of diffusion due to straggling from inelastic energy

loss collisions,
2E 2

D 2 w e E (48)
3 mvm

as the coefficient of diffusion due to momentum transfer scatterings in

the electric field, and the following convection velocities:

vE e E = mean energy gain rate in electric field , (49)
mvm

E 2 e2E 2  gain (or loss) rate arising from energy (50)
3 mvm  dependence of DE E

Ir i
v= - N0vL : mean loss rate due to inelastic (51)

collisions ,

27
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Fw

V2 - . (N0vM) : energy drift due to 21D (52)
3w 3w

Diffusion coefficients have dimensions energy 2/time, and velocities have

dimensions of energy/time. The energy dependence of DE and Di cause a
i

mean flux (v2  and v2) because of the way they appear in Eq. (46) under

the ;2/Iw2 operator. Eq. (46) can then be written

+ -L (Vg) = (D 29) (53)

it 3w 3w 3w

with

V E + VE + vi + v
S 1  V 2  V 1  V 2

(54)

= N v F ( e E / N o ) 
2  L -- -l 

( 5 4 )

3mv 2 am v 3w

-* and

D =DE + Di

(55)

= Nov r(eE/No) 2 + M1
3
am

Following Eq. (45) the steady state solution of Eq. (53) is

g = go exp (f dw) (56)
D

Forming the ratio V/D from Equations (54) and (55), we add and subtract

M/2w in the numerator, and use v-(a/aw)(vM) + M/2w w-1 (3/;w)(wM) to

find

2?
%'
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,.p

L + 1 __ (wM)
V w w (57)
D 2w E' + M

3o

where E' = eE/N o is the reduced electric field. Upon integrating and

exponentiating, the first term (1/2w) becomes 'w , and the remaining

factor is therefore F,

0i

F FO exp-r wL + w 1 (wM)/w dw (58)
E' 2 /3cr m + M

as in Eq. (36). Thus the functional form for the steady state energy

spectrum is an elementary consequence of ordinary convection and diffusion

in energy space, as is the time dependent equation (46) or (33).

This can be seen as well by writing the flux, Eq. (28), in terms

of F. After some algebra it becomes

D 2wNo {FL + 1 3(wM) F + E' 2 + MIFI (59)

m2  w aw 
3am 3w

the coefficients of F and 3F/aw being the convection velocity numerator

and diffusion coefficient denominator, respectively, of the integral in

46 Eq. (58).
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SECTION 7

THE CASE OF NITROGEN
w

We apply these ideas to N2. L and M are constructed from cross

section data. The steady state spectrum, Eq. (36), and swarm parameters

are then computed.

CROSS SECTIONS, AND L AND M FUNCTIONS

Electron-molecule cross sections are compiled in a number of

places (refs 9 - 12). Reference 13 is a recent critique of rotational and

vibrational excitations. Here we use the Gerjuoy-Stein expressions (ref

14) for rotational cross sections, with the N2 quadrupole moment Q = 1.04

in units of ea2.

For the vibrational and electronic cross sections, we use a set

compiled by Archer (ref 15) that has been in use in the DNA Auroral

physics community for years. These vibrational excitations are based on

the measurements by Schulz as normalized by Haas. A low energy (0.29 -

1.7 eV) tail for the v = 0 - 1 transition was added as suggested by

Englehardt, Phelps, and Risk (Ref. 6). Numerical values for the tail were

taken from the second table on page 64 of Kieffer (Ref. 16). The elec-

tronic cross sections agree quite well with those tabulated by Wadzinski

and Jasperse (ref 11).

L and M for 10- 3 < w < 102 eV are shown in Figure 3a. L becomes

negative for w < T ~ .025 eV, because a lower energy electron gains

ge
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Figure 3b. M/ L for N2  at 300 K.
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energy on the average by collisions with the gas at this temperature from

super-elastic rotational transitions. M, of course, is always positive.

Over 10- 3 to 10 eV, these functions vary by more than six orders of magni-

tude. The ratio M/L is shown in Figure 3b. It is much more slowly vary-

ing than M or L itself.

THE ENERGY SPECTRUM

Figures 4 and 5 show the energy spectrum F, Eq(36), for E/N0 =

10 Td and 100 Td, respectively. I Td = 10- V-cm 2. The high energy tail

is markedly higher than in the CSDA which is also shown. Any process with

significant cross section above the CSDA tail will have markedly different

rates with the two spectra.

Figure 5 also shows a spectrum from the calculation by Pitchford

and Phelps (Ref. 17), involving a numerical solution of the Boltzmann
4EQuation with complete collision integral. These authors used a different

.m cross section set, so the comparison is not meaningful in a precise

sense. Nevertheless the differences are noteworthy. In particular, we

overestimate the high energy tail and underestimate the low energy

population below 2 eV. This is due to the local diffusion approximation.

Electronic transitions allow high energy electrons to jump to very low

%-. energies more quickly than in the diffusion model. This excessive tail

will also cause a large avalanche coefficient discussed later.

Eq. (36) also shows a curious broad plateau around 3.5 to 7 eV,

€'-"absent in the more complete calculation. This too is likely due to

electronic transitions which permit electrons to jump over this energy

range. In general it is clear the average swarm energy at 100 Td will be

computed to be too large.
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Figure 4. Energy spectrum at E/No 10-16 V-cm2 from Eq. (36)
and in the CSDA.
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Figure 5. Energy spectrm at 10-15 V-cm 2 from Eq. (36), the CSDA,
and Reference 18.
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TRANSPORT COEFFICIENTS

The open circles in Figure 6 show the drift velocity calculated

with Eq(36) superimposed on data compiled by Dutton (ref 8). It is

slightly too small below, say, 3x10 - 19 V-cm 2. Here the Fokker-Planck

approximation is in jeopardy because rotational transitions become

comparablL to swarm energies. Refer to the spectrum in Figure 2 at zero

field. Average energies are slightly too large as seen momentarily.

The drift velocity is also too small near 10-' G or 10- i V-

cm . Here the spectrum is similar to that in Figure 5, and averaqe ener-

gies are again too high.

At stronger fields the drift velocity returns to good agree-

ment. Rut at these larger energies the mono-energetic momentum transfer

collision frequency in N2, Novc5m , is slowly varying with energy, and the

drift velocity is only weakly dependent on the spectrum.

At fields less than 0.1 Td, we find drift velocities computed in

the CSOA to be more than 20% too small, and characteristic energies more

than 30% too large. But in stronger fields, we find CSDA drift velocities

to be more like 5 to 12% too small, and characteristic energies 5 to 13%

larger than in the diffusion approximation.

The swarm characteristic energy is shown in Figure 7. It is

slightly too large below about 3×10 -L V-cm_, and is significantly too

large above 10-1 V-cm2, accounting for the lowered drift velocities. As

mentioned, this is due to finite rotational and electronic energy jumps in

these two regions.

The swarm momentum transfer ( and energy transfer (v u ) colli-m u
sion freauencies are shown in Fiqure 8, superimposed on a graph from Frost
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. 'Figure 6. Calculated N2 drift velocity (open circles) with data compiled

.: by Dutton (Ref. 8).
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Figure 7. Calculated swarm characteristic energies in N2 (open circles)
with data compiled by Dutton (Ref. 8). Ambient temperature
(300 K).

37

N

U ~**~-',



VV

..

•6'- I I -i

Theory
- 77K Discrete Energy Loss

z -* 300*K Discrete Energy Loss
Z 0 Continuous Approximation

to- 4 Elastic Collisions Only -
- S-

- a2 2

E 4

I"C

C z d r lb .J4 N)
.o U.

0

9 0 0
-6

2 4

2 - Z/u/N -Elastic Only - "

I 1"2  1 1 . I I I ' / .t V

120Z 4 66 2 468 2 4 66t

D/IM. Characteristic Energy (electron volts)

Figure 8. Swarm momentum transfer (v m/N) and energy transfer
(v /N) collision frequencies. The large open circles
ar our calculated values, superimposed on a graph from Frost
and Phelps (Ref. 18). The solid curves are averaged experi-
mental data at 300 K. The other four sets of points are
various theories within Ref. 18.
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and Phelps (Ref. 18). They are defined by

v eE (60)m mV drif t

: eE Vdrift (61)
u D/a - Tg

where 4 is the mobility, and D/4 is the swarm characteristic energy.

(Ref. 18 uses v for the swarm frequency, a symbol we have reserved

for the mono-energetic collision frequency.) The agreement is striking

except for vu near I eV. The dependence of vu on Vdrift and D/i accen-

tuates the dependence on the swarm average energy.

The non-self-consistent avalanche coefficient, a(cm-1), was com-

* puted by

:Vr fdwgv ai  (62)

Vdrift

where i is the total N2 ionization cross section. It is shown as

open circles in Figure 9, superimposed on data of Dutton. Below about 300

Td the CSDA, shown as crosses, is, of course, woefully low. Eq. (36) is

too high by more than an order of magnitude at 100 Td, a discomforting

amount. The spectral tail seen in Figure 5 is responsible.

DISCUSSION

With some exceptions (avalanche rate, characteristic energy when

near several eV) the Fokker-Planck approximation to the energy spectrum

•SoI
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appears to be able to reproduce transport coefficients in N2 with reason-

able accuracy. Other gases are under study. Inaccuracies show up when

molecular energy jumps are not small compared with swarm energies, pre-

cisely when the diffusion approximation becomes unreliable. These fea-

tures are understandable when it is realized that it is the spread of

energy gain and loss about the mean rates that actually determine the

spectrum.

At present the ultimate utility of the diffusion approximation

is unclear. It depends in part on the success in other qases. It may be

Quite useful for rough calculations, it being possible to obtain spectra

and all transport coefficients merely by numerical quadratures. The time

dependent equation (33) may be especially useful, being a significant

improvement over the CSDA, but not substantially more complicated.

.o*p
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APPENDIX A

ROTATIONAL CONTRIBUTION TO L AND N

ft..l

The rotational contribution to Cinel Eq. (21), is
g

Cr3t J=O (gv' 2J,J+2)w+w - (vaJ,J+ 2 )wlrot 1 3J+2
(A-1)

+ NJr -)w-w (qvaJd-2 )w(
J=2 ' 3,J-2

since only J±2 are accessible from J for a quadrupole interaction. The

* second line in Eq. (A-i) is collisions of the second kind, in which an

electron qains enerqy. N3 is the number of molecules in the J-th state,

P3 exp(-Ej/Tg)
N = N , P 1 (A-2)j P Pj exp(-E /Tg)

P3 = 3(1+a)(2J+l)

(A-3)

* Ej : J(J+1)B 0

and a=O for odd J, a=1 for even J. The transition energies are

Wjj+2 = E,+2 - Ej (4J+6)B0

-t., (A-4)

t
I
. 3W 3- = : E - E3  : (4J-2)B-
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The cross sections for excitation and de-excitation are taken as those of

Gerjuoy and Stein (Ref. 14).

(J+2)(J+l) ao[l - (4J+6)B1/ (A-5)

'3J,J+2 (2J+3)(2d+l) w
1/21

d(d-1) + (4J-2)Bo / (A-6)

(2J-l)(2J+1) w

where

C0 = 8Q 2a2 /15

(A-7)

ao = Bohr radius = .529xI0
8- cm

and Q is the molecule quadrupole moment in units of ea2. Q-1.04 for N2.0 2

B0 is the rotational constant, = 2.5xl0 -
4 eV in N2 .

The expressions for L and M, Equations (23) are

L rot 7N JwJ,J+20J,J+2 Nw,J-2aJ,J-2 (A-8)

0 2

M = 1  N w2  +a A9
-
' rot : i 0 ,J+20JJ+2 2 1 Jj-2YJJ-2 (A-9)

At 300" it takes 20 or 30 terms for the sums to converqe (by which point

E b E /T = J(J+l)B 0 /Tg > 5).

Below the threshold for exciting the lowest state, J=O to J=2, w

< 6B0 , L is obviously negative. The electron can only qain energy. All

terms toqether actually make L negative for w < T
rot g

0
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* THE SMALL B0 LIMIT

We now obtain the limiting expressions for L and M whenrot rot
BO <K TgV and B0 << w. Let

T w
g

*Insertinq the variables in Eq. (A-8) and cancellinq common factors in the

numerator and denominator we have

L 2AaOB0 Y (l+a)eukuj+±)c (J+2)(J+l)Vl-(4J+6)-y
* 0

(A-li)

-2AaOB 0 7 (1+a)e J(J+l)a J(J-l)Vl+ (4J-2)y
2

where A 3N0/E P exp(-J(J+)ct) is a normalization constant.

Many terms, up to J - V5/ct, will contribute. Take the average
value of (1+a) to be 3/2, and keep first order in y:

00

(A-12)

-3Aa 0B0 7 3(J-i) e3j(3+)t ll+(2J-l)yl

2

The sums will behave as inverse powers of a, so in the first sum the J=n)

and J=1 terms are negliciible compared with the remaining . Combining
W 2

the two remaininq sums E
2
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L e eJ+1)0 (J+2)(J+1) - J(J-1)
3Ac0 B0  2 -r(J+2)(J+l)(2J+3) + J(J-1)(2J-1)'y1  (A-13)

: 2 7 e-J(J+l)f2J+l - 2J3+3j 2+7J+31yl

2

Higher powers of J lead to higher powers of -1/2 in the sums. Keeping

leading terms,

L 4 e-J(J+l)ctrJJ3yl (A-14)

3AaOB° 2

The sums can be approximated by integrals

Je-J(J+)a W xe 2 2 I
e r xe dx f xe-'Xdx - (A-15a)

2 2 0

jx 2  1
x3e a dx = (A-1b)

2 0 2a

Then

2T T
L = 2 (1 - __ : r_ T (A-16)

3A 0 Bo  a a B0  w
U

The sum in A is

Spje-J(J+1)a 9
2at

so 4

A 3No/Pje - AJ(J+l) (A-17)i J 3

Equations (A-16) and (A-17) then show the limiting form for L as Bo + 0 to

be

T

L : 4NoaoBo(I - g) (A-18)w
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Electrons with w < T qain energy.

--p

A parallel calculation for M shows

M = 4NroBoTq (A-19)

Equations (A-is) and (A-19) are explicit expressions for L and M as B,

0. In this same limit the diffusion approximation to the spectrum should

be valid.

REDUCTION OF SPECTRUM TO MAXWELLIAN

The steady state spectrum 'Eq. (36) must become Maxwellian when

E=O. This led to the requirement (40) or (41). We now show these

requirements are indeed met when B0 + 0 for then energy jumps are small

and the diffusion expressions are good.

With M from Eq. (A-19), and L from (A-18), find

L_(wM) M (A-20)

w w w

and

L M M (A-21)

q

Thus

L + w-  ?(wM)/)w ( 1 A-22)
M T

9

as required. Likewise the integral relationship (41) between L and M is

easily shown to hold.

This shows by explicit calculation that for small enerqy jumps

"• the diffusion approximation reduces correctly.
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